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Abstract

Alzheimer’s disease (AD) is a progressive and polygenic disorder that affects millions of 

individuals each year. Given that there have been few effective treatments yet for AD, it is highly 

desirable to develop an accurate model to predict the full disease progression profile based on 

an individual’s genetic characteristics for early prevention and clinical management. This work 

uses data composed of all four phases of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

study, including 1740 individuals with 8 million genetic variants. We tackle several challenges in 

this data, characterized by large-scale genetic data, interval-censored outcome due to intermittent 

assessments, and left truncation in one study phase (ADNIGO). Specifically, we first develop a 

semiparametric transformation model on interval-censored and left-truncated data and estimate 

parameters through a sieve approach. Then we propose a computationally efficient generalized 

score test to identify variants associated with AD progression. Next, we implement a novel neural 

network on interval-censored data (NN-IC) to construct a prediction model using top variants 

identified from the genome-wide test. Comprehensive simulation studies show that the NN-IC 

outperforms several existing methods in terms of prediction accuracy. Finally, we apply the NN-IC 

to the full ADNI data and successfully identify subgroups with differential progression risk 

profiles. Data used in the preparation of this article were obtained from the ADNI database.
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1 ∣ INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative and progressive disorder that accounts 

for about 70% of cases of dementia. It affects about 44 million individuals globally and 

causes about 4.6 million new cases each year. AD is known as a polygenic disorder, and the 
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heritability of AD is estimated to be up to 79% (Gatz et al., 2006). Therefore, it has been 

of great interest in building prediction models for AD using genetic data. Moreover, because 

there are few effective treatments for AD, it is highly desirable to make early predictions 

for AD, enabling clinicians and patients to improve their quality of life before and during 

AD progression. The development of such a prediction model usually involves two steps: (1) 

identify genetic risk variants associated with AD through genome-wide association studies 

(GWAS) and (2) build a prediction model based on top variants from GWAS together 

with clinically important predictors. To date, most GWAS studies on AD are looking for 

genetic variants associated with the onset of AD based on case-control studies (Jansen et 

al., 2019). However, it is still not well investigated the genetic causes underpinning AD 

development (i.e., from non-AD to AD), which is critical for early prevention and treatment. 

Moreover, to accommodate the high-dimensional genetic variants, most existing prediction 

models use a scalar polygenic risk score (PRS), a weighted linear summation of top variants. 

Despite its simplicity, PRS ignores the complex and nonlinear relationships among the high-

dimensional genetic variants. In this paper, our goals are to (1) identify single-nucleotide 

polymorphisms (SNPs) associated with AD development (i.e., time-to-AD) through GWAS 

and (2) build an early and accurate prediction model for AD that can effectively extract 

nonlinear effects of the high-dimensional genetic risk variants.

This study is motivated by a complete database from all the four phases of the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), including 1740 Caucasian 

subjects with about 8 million SNPs. ADNI is a longitudinal study designed for the detection 

and development of AD. ADNI has gone through four phases: ADNI1 began in 2004, 

and the enrolled subjects are continuously followed together with new participants in 

three consecutive phases (ADNIGO, ADNI2, ADNI3). One major statistical challenge in 

analyzing the ADNI data is that the time-to-AD is not precisely observed due to intermittent 

assessment times, leading to interval-censored time-to-AD data. Further complications 

include right censoring, in which some subjects are still free of AD at the last assessment 

time, and left censoring, in which some subjects are enrolled with AD. Therefore, the 

occurrence time of AD is under general interval censoring, including a mixture of left-, 

right-, and interval censoring. Another statistical challenge is left truncation since subjects 

with AD are not included in the phase of ADNIGO. Ignoring interval censoring or left 

truncation may lead to biased model estimation and invalid inference results.

For regression models on interval-censored and left-truncated data, most existing works 

consider the proportional hazards assumption (e.g., Alioum & Commenges, 1996; Pan & 

Chappell, 2002; Shen, 2014; Gao & Chan, 2019; Wang et al., 2021). Recently, Shen et 

al. (2019) develop a semiparametric transformation model that includes a broad class of 

regression models and estimates parameters using a nonparametric maximum likelihood 

estimation approach. For survival/progression prediction models using interval-censored 

data with high-dimensional covariates (such as thousands of top SNPs from GWAS), several 

endeavors have been undertaken. For example, Li et al. (2020) develop a Cox model 

with adaptive Lasso under interval censoring. Wu et al. (2020) propose a penalized Cox 

model under interval censoring and utilize Bernstein polynomials to approximate nonlinear 

covariate effects. Yao et al. (2021) develop a survival forest method for interval-censored 

data. Recently, Sun et al. (2020) develop a neural network method for survival prediction 
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under right censoring, achieving significantly better accuracy than several other methods 

(i.e., LASSO, random forest). In particular, its partial-likelihood-based loss function 

contains an unknown covariate-dependent function, approximated by a neural network 

inputted with high-dimensional covariates. One advantage of the neural network is that it 

can handle high-dimensional features and extract useful information from complex feature 

structures. Therefore, it is worth investigating whether the synergy of the neural network 

and genetic data can enhance accuracy in the progression prediction of AD, which is subject 

to interval censoring in ADNI. However, to be best of our knowledge, there is no neural 

network method for interval-censored data. One major difficulty lies in the simultaneous 

estimation of two unknown and nonlinear functions: the covariate-dependent function and 

the infinite-dimensional baseline hazard function. Moreover, as the baseline hazard is 

a function of time instead of covariates, the conventional neural network inputted with 

covariates cannot be applied here. Therefore, developing and implementing neural networks 

under interval censoring is more complicated than under right censoring.

In this paper, we first build a semiparametric transformation model for interval-censored 

and left-truncated data. Specifically, we develop a sieve estimation approach based on 

Bernstein polynomials and a computationally efficient score test for screening large amounts 

of covariates in settings like GWAS. Following that, we propose a novel neural network 

method for interval-censored data (NN-IC) that can simultaneously estimate the covariate-

dependent function and the infinite-dimensional baseline hazard function. Specifically, we 

construct a new neural network based on Bernstein polynomials (“BPNet”) to estimate the 

baseline hazard function. Finally, we apply these proposed methods to perform GWAS and 

develop the progression prediction model for AD using the ADNI data.

The remainder of this article is organized as follows. Section 2 describes the ADNI 

study, the current state-of-the-art prediction models for AD using ADNI, and how we 

process the data. In Section 3, we present our semiparametric transformation model for the 

interval-censored and left-truncated data. In Section 4, we introduce the NN-IC method, 

including its loss function, network architecture, hyperparameters, prediction evaluation, and 

interpretation. In Section 5, we examine our methods under various simulation settings. In 

Section 6, we present the GWAS and progression prediction results in ADNI. Section 7 

summarizes findings and discussions. The Supporting Information includes Web tables and 

figures.

2 ∣ ADNI DATA AND EXISTING WORKS

Our data are obtained from the ADNI (Mueller et al., 2005). ADNI is a longitudinal 

multicenter study designed to develop clinical, imaging, and genetic biomarkers for the 

detection and development of AD. ADNI has recruited over 2300 individuals, consisting of 

people with cognitive normal (CN), mild cognitive impairment (MCI), and AD. The enrolled 

subjects were intermittently assessed during follow-up. The data used in this study were 

downloaded on May 1, 2021.

ADNI is one of the most well-known studies for predicting AD development. For example, 

Li et al. (2019) constructs a Cox-LASSO model with 256 MRI features extracted by neural 
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networks from 2000 MCI subjects, obtaining better accuracy than the Cox model using 

traditional shape and texture features in MRI. Kong et al. (2018) develop a functional linear 

Cox regression model with scalar and time-varying predictors and use it to predict AD 

development in 373 MCI subjects. Li and Luo (2019) extract features from multiple time-

varying predictors using multivariate functional principal component analysis (MFPCA) and 

apply them to a Cox model with 384 MCI individuals. Jiang et al. (2021) also extract 

features using MFPCA and applies them to an ensemble survival tree with 302 MCI 

subjects. Lin et al. (2021) extract features from multiple time-varying predictors and apply 

them to a random survival forest with 511 MCI individuals, outperforming the Cox model. 

Nakagawa et al. (2020) develop a deep learning survival model with gray matter volumes 

of 246 brain regions in 2000 CN/MCI subjects, outperforming the Cox model. However, all 

these studies convert interval-censored time-to-AD observations to right-censored data (i.e., 

using the observed interval’s midpoint as the event time), resulting in potentially suboptimal 

prediction results. Additionally, these prediction models rarely use ADNI’s GWAS data.

Moreover, most existing works using ADNI only utilize information from MCI individuals 

(45.4% of all participants), ignoring the individuals who were either CN or AD when 

entering ADNI. MCI is an intermediate disease stage between CN and AD. It has been 

well recognized that the underlying pathology of AD occurs before MCI (Petersen, 2009). 

Therefore, instead of just focusing on MCI patients, we make early predictions of AD in 

the general CN/MCI population to improve their quality of life before and during disease 

progression. Because ADNI recruits subjects at age 55 or above and AD rarely occurs before 

age 55 (Reitz et al., 2020), we set age 55 as the start time and calculate our event of interest 

(i.e., time-to-AD) on the age scale. One benefit of using age 55 as the start time is to make 

early and full-time course predictions in the population starting from age 55, when most 

individuals are free of AD pathology. Moreover, in aging-related studies, because aging is 

associated with a higher risk of chronic diseases like AD, age represents a more natural 

timescale than the study entry scale for characterizing the risk of AD (Lee et al., 2017). 

The third benefit of using the age scale instead of the study-entry scale is that it enables 

us to incorporate individuals who entered ADNI with AD as left-censored observations. 

Therefore, our work utilizes information from ADNI individuals with CN, MCI, or AD.

We use 1740 Caucasian individuals from all four phases of ADNI with genetic data and 

complete information about age, gender, education, and the APOE allele variant. The entire 

cohort can be divided into three groups: (a) those who developed AD before enrollment; (b) 

those who entered the study without AD and never developed AD during the follow-up; (c) 

the rest who entered the study without AD and later developed AD during the follow-up. 

For subjects in groups (a) and (b), the time-to-AD is left- and right-censored, respectively. 

For group (c), the time-to-AD is interval-censored (i.e., the AD event time lies between 

two adjacent assessment times). In addition, a left-truncation issue arises in the phase of 

ADNIGO because subjects with AD (i.e., group (a)) were not recruited.

Because the raw genetic data are obtained from different genotyping platforms across 

phases, we impute them to a common reference panel (1000 Genomes Project Phase 3 

Release 5) through the Michigan Imputation Server. For quality control, we keep SNPs 
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with Minimac3 R2 ≥ 0.3, MAF ≥ 0.01, Hardy–Weinberg equilibrium p-values ≥ 0.001, and 

missing genotype rate ≤ 0.05, leading to a total of 7,726,012 SNPs for each individual.

We randomly split the complete ADNI data into Data1 (n = 1305) and Data2 (n = 435) by 

a ratio of 3:1. The splitting is stratified based on the censoring status and study phases. 

We will use Data1 to perform GWAS, train and validate prediction models internally and 

use Data2 to validate prediction models externally. The characteristics of the complete data, 

Data1 and Data2 are summarized in Table 1.

3 ∣ SEMIPARAMETRIC TRANSFORMATION MODEL FOR THE INTERVAL-

CENSORED AND LEFT-TRUNCATED DATA

3.1 ∣ Notations and assumptions

First, we define notations for the interval-censored and left-truncated data as in ADNIGO. 

Denote T  as the time from the initial event (i.e., age 55) to the event of interest (i.e., the 

occurrence of AD), A as the truncation time from the initial event to the study entry, and Z
as the covariate vector. In the presence of left truncation, only subjects who satisfy A ≤ T  are 

observed. Let (A, T , Z) denote the realization of (A, T , Z) given A ≤ T . Let Q = (Q1, …, QK)T

be K gap times between two assessments following the study entry and define ((U1, …, UK)) 
as the assessment times after the enrollment, where Uk = A + ∑l = 1

k Qk, k = 1, …, K. Since 

ADNI individuals follow a prespecified assessment time schedule, it is reasonable to assume 

that Q is independent with (A, T ) given Z. When T ∈ (U l, U l + 1] for l ∈ {1, …, K − 1}, we write 

the observed time interval for T  as (L, R] = (U l, U l + 1]. When T < U1, we have (L, R] = (A, U1]. 
When T > UK, we have (L, R] = (UK, ∞] corresponding to right censoring. Therefore, the 

observed data for the ith subject in ADNIGO are written as D1i = {Ai, Li, Ri, Zi}, where 

i = 1, …, n1 for n1 independently and identically distributed (i.i.d.) subjects.

For the rest phases without the left-truncation issue, the observation for the ith subject 

is denoted as D2i = {Li, Ri, Zi}, where i = 1, …, n2 for n2 i.i.d. subjects, Li and Ri form the 

observed time interval for the event time T i and Zi is a p-dimension covariate vector.

For the regression model of T  given covariates Z, we consider the semiparametric 

transformation model, with the survival function expressed as

S(t ∣ Z) = exp[ − G{exp(ZTβ)Λ(t)}], (1)

where G( ⋅ ) is a prespecified increasing function, β is the regression coefficient vector, 

and Λ(t) is a nondecreasing function of time t. We choose the logarithmic function 

G(x) = log(1 + rx) ∕ r that includes proportional hazards (PH; r = 0) and proportional odds 

(PO; r = 1) models. Therefore, the transformation model is more flexible than the traditional 

PH or PO models.
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3.2 ∣ Joint likelihood for ADNI individuals

We build the joint likelihood for individuals from all four phases of ADNI. We assume all 

individuals share the same parameters (β, Λ). For ADNIGO with the left truncation issue, we 

first examine whether the truncation time satisfies the length-biased assumption, which is 

rejected with a p-value of 0.02 by a formal test (Addona & Wolfson, 2006). Therefore, we 

adopt the conditional likelihood approach commonly used for left-truncated data, assuming 

that A and T  are independent given the covariates Z. The conditional likelihood of (L, R) 

given (A, Z) for ADNIGO individuals can be written as

Ln1
C (β, Λ ∣ D1) = ∏

i = 1

n1 exp[ − G{exp(Zi
Tβ)Λ(Li)}] − exp[ − G{exp(Zi

Tβ)Λ(Ri)}]
exp[ − G{exp(Zi

Tβ)Λ(Ai)}]
. (2)

For individuals from the rest phases, the full likelihood of (L, R) given Z can be written as

Ln2
F (β, Λ ∣ D2) = ∏

i = 1

n2

(exp[ − G{exp(Zi
Tβ)Λ(Li)}] − exp[ − G{exp(Zi

Tβ)Λ(Ri)}]) . (3)

Overall, the joint likelihood for all ADNI individuals is expressed as

Ln(β, Λ ∣ D1, D2) = Ln1
C (β, Λ ∣ D1) × Ln2

F (β, Λ ∣ D2) . (4)

3.3 ∣ Sieve estimation and the generalized score test

In our joint likelihood (4), we are interested in estimating the unknown parameter θ ∈ Θ, 

where Θ = {θ = (βT , Λ)T ∈ ℬ ⊗ ℳ }, ℬ = {(β ∈ Rp, ‖β‖ ≤ M} with M being a positive 

constant, and ℳ the collection of all bounded, continuous, and nondecreasing functions 

over [c, u]. We need to estimate finite-dimensional parameters β and an infinite-dimensional 

parameter Λ(t) simultaneously. Following Zhou et al. (2017), we use Bernstein polynomials 

to build a sieve space Θn = {θn = (βT , Λn)T ∈ ℬ ⊗ ℳn }. Here, ℳn is the space defined as

ℳn = Λn(t) = ∑
k = 0

mn

ϕkBk(t, mn, c, u) : ∑
k = 0

mn

∣ ϕk ∣ ≤ Mn;

0 ≤ ϕ0 ≤ ⋯ ≤ ϕmn ,
(5)

where Bk(t, mn, c, u) represents the Bernstein basis polynomial defined as 

Bk(t, mn, c, u) = mn

k
{(t − c) ∕ (u − c)}k{1 − (t − c) ∕ (u − c)}mn − k, with degree mn = o(nv) for some 

v ∈ (0, 1) and k = 0, …, mn. By maximizing ln(θ; D1, D2) = log Ln(θ; D1, D2) over the sieve space 

Θn, we obtain the sieve estimators θn = (βn
T, Λn)T . For the variance-covariance of βn, we invert 

the observed information matrix and take the corresponding block.

We aim to test millions of SNPs one by one. We propose a computationally efficient 

generalized score test. Specifically, we denote β = (βg, βng), where βg is the parameter of 
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interest for testing (i.e., SNP) and βng are the rest coefficients. Then the null hypothesis for 

one single SNP is expressed as H0 :βg = 0 and (βng, Λ) is arbitrary. Denote θ0 = (βg = 0, βng0, Λ0)
as the restricted sieve maximum likelihood estimator under the null hypothesis. By 

following Cox and Hinkley (1979), we obtain the generalized score test statistics as

T s = UT(θ0)J−1(θ0)U(θ0), (6)

where U(θ0) and J(θ0) are the score function and observed information matrix, respectively. 

The test statistics follow a χ2 distribution with a degree of freedom being 1. One big 

advantage of the score test is that one only needs to estimate the model parameters once 

under the null model without any SNP, which greatly reduces computation time in GWAS 

(Sun et al., 2019).

4 ∣ NEURAL NETWORK FOR INTERVAL-CENSORED DATA

We propose a novel neural network method for interval-censored data (NN-IC). We do 

not consider left truncation because we predict AD starting at age 55, at which AD rarely 

occurs. Moreover, we aim to predict AD risk for a new subject who does not necessarily 

enter ADNI, and thus the left-truncation issue does not apply.

4.1 ∣ Assumption and loss function

Our NN-IC model is based on the PH assumption, the most popular assumption for censored 

data. Similar to Section 3, we assume the assessment times (i.e., L and R) are independent 

of the event time given covariates. The NN-IC model is expressed as Λ(t ∣ Zi) = Λ(t)eg(Zi; θ), 
where Λ(t) is the unspecified baseline cumulative hazard function at time t, g(Zi; θ) is the 

prognostic index with an unknown form for the function g( ⋅ ), and θ is the parameter set. 

One major advantage of NN-IC compared to the regular PH model is that NN-IC can 

estimate various nonlinear structures of g( ⋅ ) using neural networks (Hornik et al., 1989), 

whereas the regular PH model simply assumes g( ⋅ ) is a linear function, which is hardly true 

in the presence of high-dimensional covariates. To mitigate the overfitting issue in neural 

networks, we follow existing works (Bello et al., 2019) to apply the L1 penalty to the loss 

function −l(θ, Λ; Z) + λ‖θ‖1, where l(θ, Λ; Z) is the log-likelihood function:

1
n ∑

i = 1

n
log[exp{ − Λ(Li)eg(Zi; θ)} − exp{ − Λ(Ri)eg(Zi; θ)}] . (7)

4.2 ∣ NN-IC architecture and hyperparameters

The loss function of NN-IC is essentially a semiparametric function, involving unspecified 

infinite-dimensional parameters (Λ(Li), Λ(Ri)) as well as the unknown covariate-dependent 

function g(Zi; θ). We need to estimate all these functions using neural networks 

simultaneously. However, the conventional method that approximates a function with a 

neural network inputted with covariates does not work for estimating Λ(Li) and Λ(Ri). 
Therefore, the estimation of NN-IC is more complicated than the usual existing partial-

likelihood-based neural network methods (Faraggi & Simon, 1995; Katzman et al., 2018).
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To solve the estimation problem in NN-IC, we propose a novel multiple neural-network-

based estimation approach. First, for the estimation of g(Zi; θ), we use a regular L-hidden-

layer neural network inputted with covariates. Specifically, Zi constitutes the input nodes 

of the neural network, the parameter θ represents the collection of all weights in the 

network, and the output of the network is g(Zi; θ). Second and more importantly, for the 

estimation of Λ( ⋅ ), we propose a new type of neural network constructed by Bernstein 

polynomials, named as “BPNet” and build two separate BPNets to approximate Λ(Li) and 

Λ(Ri), respectively. Take the BPNet for Λ(Li) as an example. The BPNet takes Li as its 

input node, connects the input node with a hidden layer containing (mn + 1) number of 

hidden nodes and produces a scalar value oi in the output node. Specifically, for the kth
hidden node ak (k = 0, …, mn), we have ak = fk(Li), where fk is the activation function for 

ak, and it takes the form of a Bernstein basis polynomial as defined in Section 3, that is 

ak = fk(Li) = Bk(Li, mn, c, u). For the output node oi of this BPNet, it can be expressed as

oi = fout( ∑
k = 0

mn

wkak) = ∑
k = 0

mn

wkak = ∑
k = 0

mn

wkBk(Li, mn, c, u), (8)

where fout is an identity function, wk is the weight parameter satisfying 0 ≤ w0 ≤ ⋯ ≤ wmn. 

Typically we have oi = Λn(Li). The parameter set in this BPNet is composed of 

{wk, k = 0, …, mn}. Moreover, the BPNets for Λn(Li) and Λn(Ri) share the same set of 

parameters wk. Overall, the full parameter set in NN-IC is composed of {θ, wk, k = 0, …, mn }. 

By maximizing the loss function in Equation 7, we can obtain the estimators θn, and 

Λn (expressed by wk). We use the mini-batch stochastic gradient descent algorithm for 

optimizing the loss function. Once we get g(Zi; θn) and Λn, we can obtain the predicted 

survival probability for subject i at time t through S(t ∣ Zi) = exp{ − Λn(t)eg(Zi; θn)}.

The NN-IC method involves hyperparameter selection. For the neural network in g(Zi; θ)
estimation, hyperparameters include the number of hidden layers, number of nodes per 

hidden layer, choice of activation function, the L1 penalty parameter, batch size, epoch size, 

and learning rate. For BPNets, the hyperparameter is the degree of Bernstein polynomials. 

We select the hyperparameters using cross-validations as described in Section 4.3. For 

real data analysis, we use the following hyperparameters: one hidden layer, 50 nodes per 

hidden layer, activation function Scaled Exponential Linear Unit (SeLU), L1 penalty = 0.5, 

batch size NB = 50, epoch size NE = 1000, learning rates 0.002, uniformly distributed initial 

values, and Bernstein polynomial degree mn = 5. For the simulations, we select the following 

hyperparameters: two hidden layers, 50 nodes per hidden layer, activation function SeLU, L1

penalty = 0.5, batch size 50, epoch size 1000, learning rate 0.01, uniformly distributed initial 

values, and mn = 3.

4.3 ∣ Prediction evaluation, validation, and interpretation

We use various metrics to evaluate prediction accuracy under interval censoring. For real 

data analysis, we use the integrated Brier score (IBS) (Tsouprou, 2015), expressed as
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IBS(S) = 1
n ∑

i = 1

n 1
u∫0

u

{I(T i > t ∣ Zi) − S(t ∣ Zi)}2dt, (9)

where u is the maximum finite value of all observed {Li, Ri}. When Ri < t, 
we have I(T i > t ∣ Zi) = 0. When Li ≥ t, we have I(T i > t ∣ Zi) = 1. When Li < t ≤ Ri, 

the exact value of I(T i > t ∣ Zi) is unknown. We estimate I(T i > t ∣ Zi) by 

I (T i > t ∣ Zi) = {S(t ∣ Zi) − S(Ri ∣ Zi)} ∕ {S(Li ∣ Zi) − S(Ri ∣ Zi)}. In the special case when 

Li < t ≤ Ri = ∞, I (T i > t ∣ Zi) = S(t ∣ Zi) ∕ S(Li ∣ Zi). We also consider two additional 

evaluation metrics: the proportion of the predicted median survival time lying outside (Li, Ri]
(denoted as pout), as well as the absolute distance of the predicted median time below Li or 

above Ri when the predicted median time falls outside (Li, Ri] (denoted as dout). In simulation 

studies where the true survival function and event time T  are known, we employ the mean 

squared prediction error, which is essentially the average integrated L2 distance between the 

true and the estimated survival functions, expressed as

L(S) = 1
n ∑

i = 1

n 1
T i
∫

0

Ti

{S(t ∣ Zi) − S(t ∣ Zi)}2dt . (10)

Smaller values of these metrics indicate better prediction performance.

Overfitting is a common issue in developing prediction models. One way to alleviate the 

issue is to first select the optimal set of hyperparameters in the training dataset via internal 

cross-validation, build a final model with the selected hyperparameters in the entire training 

dataset, and evaluate it in an external dataset.

It is crucial to interpret the prediction of NN-IC. We employ the local interpretable model-

agnostic explanation (LIME) method (Ribeiro et al., 2016), which calculates a prediction 

importance level for each predictor in each subject. More details about how to implement 

LIME in a deep learning survival model can be found in Sun et al. (2020).

5 ∣ SIMULATION STUDIES

5.1 ∣ Simulation I: Parameter estimation in interval-censored and left-truncated data

We evaluate the estimation performance of the semiparametric transformation model 

presented in Section 3. The true event times are generated from the PH model with 

Weibull baseline hazards (scale λ = 0.1 and shape k = 2) and the PO model with Loglogistic 

baseline hazards (scale λ = 1 and shape k = 2). Two nongenetic covariates are generated 

from a normal distribution N(6, 22) and a Bernoulli distribution (p = 0.5), with regression 

coefficients βng1 = βng2 = 0.1. A genetic covariate, coded as 0 or 1 or 2, is generated from 

a multinomial distribution with probabilities {(1 − p)2, 2p(1 − p), p2}, where p = 40 % is the 

minor allele frequency. The coefficient of the genetic covariate is set as βg = 0. The 

truncation times are generated from an exponential distribution. To obtain interval-censored 

data, we followed the procedure in Sun and Ding (2021), which fits the study design of 
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ADNI. Explicitly, we assume each subject is assessed for K times with the length between 

two adjacent assessments following an exponential distribution. For each subject i, Lij is 

defined as the last assessment time before T ij and Rij is the first assessment time after T ij. 

When T ij is larger than the last assessment time, T ij is right-censored at the last assessment 

time. The sample size is n = 500. We use the Bernstein polynomial degree mn = 3. For the 

time range [c, u], we choose c = 0 and set u as the largest value of all {Lij, Rij} plus a 

constant. We repeat the simulations 1000 times and report the results in Web Table 1. Our 

sieve estimators are all unbiased, and all empirical coverage probabilities are close to the 

nominal level.

We compare the computing time of our proposed generalized score test with Wald and 

likelihood ratio tests. For screening 5000 genetic variants, the three tests take 2.5, 13, and 

12.5 min. Therefore, the score test is about five times faster than the other tests. When 

screening 7.7 million genetic variants as in ADNI, the computation times are approximately 

3 days, 14 days, and 13 days using the score, Wald, and likelihood ratio tests, respectively. 

Thus, the score test greatly enhances the computational efficiency in real applications.

5.2 ∣ Simulation II: Survival prediction in interval-censored data

We evaluate the prediction performance of NN-IC together with two prediction methods 

for interval-censored data: the adaptive lasso model under the PH assumption (“ALASSO”) 

(Li et al., 2020) and the conditional survival forest model (“ICcforest”) (Yao et al., 2021). 

For ALASSO, we use the R package {ALassoSurvIC}, which searches the optimal tuning 

parameter automatically based on Bayesian information criterion (BIC). For ICcforest, we 

use the R package {ICcforest}, which provides two approaches for finding mtry (i.e., the 

number of randomly selected predictors at each split). One approach is based on the out-of-

bag error estimates, and the other is to set mtry = p. We find that the latter approach results 

in better prediction performance in the simulated and real data. Therefore, we use mtry = p. 

For NN-IC, since we have many hyperparameters and multiple simulation scenarios, we fix 

one set of hyperparameters for all scenarios. More details about the NN-IC hyperparameters 

are described in Section 4.

In genetics and genomics data, we observe that many predictors have (nonzero) weak effects 

due to correlations among predictors. Therefore, we generate data with weak effects and set 

the number of predictors as p = 20, 50, 100, 500. We consider the following scenarios:

Scenario1 : ℎ(t ∣ Zi) = ℎ0(t) exp ∑
j = 1

p
βjZij , (11)

Scenario2 : ℎ(t ∣ Zi) = ℎ0(t) exp ∑
j = 1

p
βjZij + Zi1

2 + Zi2
2 , (12)
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Scenario3 : ℎ(t ∣ Zi) = ℎ0(t) exp ∑
j = 1

p
βjZij + Zi3Zi4 , (13)

Scenario4 : ℎ(t ∣ Zi)

= ℎ0(t) exp ∑
j = 1

p
βjZij + Zi1

2 + Zi2
2 + Zi3Zi4 , (14)

Scenario5 : ℎ(t ∣ Zi)

= ℎ0(t) exp ∑
j = 1

p
βjZij + I(Zi1 < − 0.5 ∪ Zi2 < − 0.5)

− I(Zi1 ≥ − 0.5 ∩ Zi2 ≥ − 0.5) + Zi3Zi4),

(15)

where ℎ0(t) is the baseline Weibull hazard function with λ = 0.01, k = 10. We generate Zi

from a multivariate normal distribution MV N(0, Σ) with Σ = {σjj′ = e− ∣ j − j′ ∣ , 1 ≤ j, j′ ≤ p}. 

Then the first 20% Zij remain continuous, the second 20% Zij are transformed into 

binary predictors through I(Zij > 0), and the rest 60% Zij are transformed into multinomial 

predictors through I(Zij > − 0.5) + I(Zij > 0.5)). We set βj = 0.2 for continuous and binary 

predictors. For multinomial predictors, we mimic the linkage disequilibrium effect in SNP 

data by generating βj from MV N(0.2, 0.01 × Σ). The right-censoring rates are 50%, and 

sample sizes are 1000. We train the models in a training dataset, test them in a test 

dataset, and summarize the results across 200 replications. In Table 2, we compare NN-IC, 

ICcforest, and ALASSO in terms of the mean squared prediction error between the true 

and predicted survival probabilities. A smaller value of the prediction error indicates better 

prediction accuracy. In general, NN-IC outperforms the other models. As p increases, all 

methods’ performance declines. We also evaluate the three methods in data generated 

from a PO model and find that NN-IC outperforms the other methods, especially when 

p is large (Web Table 2). Therefore, NN-IC seems to have some robustness against the 

misspecification of the PH assumption.

We further evaluate the effects of sample sizes, number of hidden layers, number of nodes 

per layer, and choices of initial parameter values on the prediction performance of NN-IC. 

We choose scenario 5 with p = 500 and present the results in Web Figure 1. Overall, the 

mean squared prediction error decreases as the sample size increases, and the increment 

is more obvious between smaller sample sizes, such as from n = 200 to 500 or n = 500 to 

1000. This demonstrates that NN-IC requires a moderately large sample size to achieve good 

prediction performance when the number of predictors is relatively large. The performance 

of NN-IC is relatively stable using different hidden layers, suggesting that NN-IC with a 

few hidden layers shall be sufficient. For the number of nodes per layer, when the number 

reaches 75 or above, the mean squared prediction error steadily increases, suggesting a 

moderate number of nodes (i.e., 50) is appropriate. Lastly, the choices of initial values 

affect NN-IC’s performance, with the lowest mean squared prediction error corresponding to 

initial values sampled from a uniform distribution between 0 and 1 (which is what we use in 

all analyses).
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6 ∣ APPLICATION TO ADNI DATA

6.1 ∣ GWAS results

We analyze Datal by applying the semiparametric transformation model in Section 3. We 

build two null models, one using only clinical factors (gender, education, phase of ADNI), 

and the other adjusting for the genetic factor APOE. We choose the model with the smallest 

BIC, corresponding to g(x) = log(1 + 0.2x) ∕ 0.2 and mn = 3.

We perform GWAS in 7.7 million SNPs using the proposed generalized score test under 

both null models and plot the −log10(p) values in Web Figure 2. For GWAS without adjusting 

APOE, multiple SNPs from the PVRL2–TOMM40–APOE–APOC1 region on chromosome 

19 reach the “genome-wide” significance level (p < 5 × 10−8). This region is significantly 

associated with AD onset in case-control studies (Jansen et al., 2019). In GWAS adjusting 

for APOE, we find one significant gene CHRNA4 on chromosome 20, which is also 

known for AD (Kawamata & Shimohama, 2002). Moreover, we successfully identify several 

risk variants that have not been previously reported. For example, multiple SNPs in the 

CDKN2AIP gene on chromosome 4 reach the moderate significance level (p < 1 × 10−5) in 

both GWAS. The gene plays a central role in DNA damage response and influences multiple 

signaling pathways involved in cell proliferation, apoptosis, and senescence (Cheung et al., 

2014). These new findings may contribute to the understanding of AD development.

Recent works suggest that SNPs with large p-values can still contribute to disease prediction 

(Escott-Price et al., 2017). Therefore, we relax the p-value threshold to p < 1 × 10−3. We 

perform SNP clumping (Privé et al., 2018) to extract representative SNPs out of the top 

SNPs, and obtain 71, 371, 623, and 1970 SNPs at the p-value thresholds of 1 × 10−5, 1 × 

10−4, 2 × 10−4, and 1 × 10−3 respectively. We use these representative SNPs and nongenetic 

predictors (i.e., gender, education) to develop AD prediction models in Section 6.2.

6.2 ∣ Prediction model comparisons and results

We apply and compare several methods to make progression predictions for AD, including 

(i) the regular semiparametric PH model (“icenReg”) using the R package icenReg 
(Anderson-Bergman, 2017), (ii) the Bayesian semiparametric PH model (“Bayesian”) (Lin 

et al., 2015), (iii) the adaptive lasso model (“ALASSO”) (Li et al., 2020), (iv) the conditional 

survival forest model (“ICcforest”) (Yao et al., 2021), and (v) our proposed NN-IC 

method. We perform fivefold cross-validation, train the models in Data1, and evaluate their 

predictions in Data2. For ALASSO and ICcforest, we use their optimal parameter tuning 

procedure as described in Section 5.2. For NN-IC, we select the set of hyperparameters 

that gives the best average prediction performance (i.e., IBS) across the five replications. 

The final choice of NN-IC hyperparameters is described in Section 4. We also include two 

benchmark models (“APOE” and “PRS”), which are standard PH models using gender, 

education, and APOE or the PRS as predictors. Specifically, PRS is a weighted sum of the 

31 AD-associated SNPs reported in Desikan et al. (2017). The weights are from a survival 

model analyzing time-to-AD onset based on a cohort not included in ADNI.
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We compare the prediction performance (i.e., using metrics such as IBS, pout, dout) across 

different models in multiple scenarios corresponding to varying p-value thresholds from 

GWAS. Smaller values of these evaluation metrics represent better prediction performance. 

For the internal cross-validation in Data1 (Table 3, panel a), the performance of NN-IC 

improves as the number of predictors increases among the four scenarios presented. We 

also check an additional scenario with more SNPs (e.g., 3629 SNPs at the threshold 

of p < 2 × 10−3) and find that the performance of NN-IC decreases compared to the 

performance with 1970 SNPs in scenario 4 (results not shown). For the external validation 

in Data2 (Table 3, panel b), NN-IC generally achieves better prediction performance than the 

other methods, particularly in scenario 4. The computing times of NN-IC for fitting Datal 

once are 16–24 s under scenarios 1–4. In addition, the icenReg, Bayesian, and ALASSO 

methods fail due to difficulties in handling large matrices when the number of SNPs is 

moderately large. Although the Bayesian method seems to give a better prediction than 

NN-IC in Data1 in scenario 1, it performs less optimally than NN-IC in Data2. The PRS 

model gives simlar prediction metrics as the APOE model in the internal and external 

validations.

We also calculate the time-dependent Area under the ROC Curve (AUC) values (Wu et 

al., 2020) in Data2 for APOE, PRS, ICcforest, and NN-IC under scenario 4. As shown in 

Web Table 3, the AUC values from NN-IC are generally similar to or higher than the other 

models across different time points from age 60 to 80. Although NN-IC gives lower AUC 

than APOE and PRS at the late age of 80, its AUC values are higher in the early to middle 

ages. In addition, NN-IC shows advantages over APOE and PRS in terms of other evaluation 

metrics, as shown in Table 3.

To interpret predictions by NN-IC, we obtain the predictor importance measure for each 

subject in Data2 using the LIME method under scenario 4. One advantage of LIME is that 

it provides a subject-specific interpretation of predictor importance. Figure 1A illustrates 

the top 10 important predictors, among which some are harmful (red) or protective (blue). 

In particular, the minor allele of rs429358 in the APOE gene shows the strongest harmful 

effect for AD in all subjects. We also plot the top 10 important predictors without APOE 
in Figure 1B. We find that one genetic variant could be important for some individuals but 

not for others (visualized by different vertical color bands within each predictor), suggesting 

heterogeneity in the population.

We successfully identify two distinct subgroups with differential progression profiles using 

NN-IC in Data2. Specifically, we perform the Gaussian mixture model on the predicted 

prognostic index g (output from the neural network in NN-IC), as illustrated in the 

histogram of Figure 2A. The corresponding plot on the Turnbull estimates (Turnbull, 

1976) of progression-free probabilities indicates significantly different progression profiles 

between the two subgroups (namely, the low-risk and high-risk subgroups), with 

p = 7.4 × 10−5 based on the log-rank test in interval-censored data (Finkelstein, 1986). 

Moreover, no subgroups can be detected based on the predicted log-likelihood values from 

the ICcforest model, as illustrated in Figure 2B. Overall, NN-IC’s accurate prediction 
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performance, the individualized predictor importance measures, and the identified risk 

subgroups provide valuable insights for early prevention and clinical management of AD.

7 ∣ DISCUSSION AND CONCLUSION

Our work is the first study on AD prediction that appropriately handles interval-censoring 

and fully utilizes the wealthy GWAS predictors in the complete ADNI data. Our AD 

prediction model predicts risks of developing AD starting from an early age, enabling 

clinicians and patients to improve their quality of life before and during disease progression. 

Our prediction model achieves higher prediction accuracy than existing methods for interval-

censored data and identifies high- and low-risk subgroups that facilitate early prevention.

Our work has two major contributions. First, we report the first GWAS that investigates 

genetic variants associated with AD development (i.e., time-to-AD) by utilizing the full 

ADNI genetic data. To deal with interval censoring and left-truncation issues in ADNI, 

we propose a semiparametric transformation model with a sieve estimation approach. 

A computationally efficient score test is developed to enable the fast screening of 

millions of SNPs. We successfully identify multiple novel SNPs, which may advance the 

understanding of biological mechanisms underlying AD development. Second, our NN-IC 

method is the first neural network method for interval-censored data that employs a flexible 

semiparametric loss function. NN-IC incorporates and optimizes two neural networks 

simultaneously: a BPNet to estimate the infinite-dimensional baseline cumulative hazard 

function and another neural network to estimate the high-dimensional covariate effects. 

In particular, BPNet naturally satisfies the nonnegative and nondecreasing property of the 

cumulative hazard function by implementing Bernstein polynomials into the neural network. 

Overall, NN-IC achieves better accuracy than several existing methods in simulated and 

ADNI datasets. It can be readily applied to other progressive disorders where the event of 

interest is intermittently assessed.

Many machine/deep-learning methods have been developed for disease progression 

prediction. In particular, for the GWAS data, recent studies report that the neural network 

shows advantages in terms of prediction accuracy compared with other machine learning 

methods in right-censored data (Sun et al., 2020; Yan et al., 2021). To evaluate the 

prediction performance of neural networks in interval-censored data, we analyze two 

additional benchmark datasets. One is from the Age-related Eye Disease Study (AREDS) 

containing 7803 observations and 666 genetic variants. The event of interest is time-to-late-

AMD (age-related macular degeneration), which is interval-censored due to intermittent 

assessments. Sun et al. (2020) used AREDS to predict AMD progression but imputed 

the interval-censored data into right-censored data. We split AREDS into training and test 

datasets at a ratio of 9:1 and report results in the test dataset. As shown in Web Table 4a, 

NN-IC exhibits better prediction performance than ICcforest, ALASSO, and icenReg. The 

second dataset is from the Tandmobiel study containing 61,267 observations and 49 clinical 

predictors, most of which are binary. The event of interest is time-to-tooth-emergence in 

children. The event is interval-censored due to annual dental examinations. Yao et al. (2021) 

used this dataset to evaluate the performance of ICcforest. We split the data into training and 

test datasets and report results in the test dataset. As shown in Web Table 4b, NN-IC and 
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ICcforest exhibit similar prediction performance. In summary, NN-IC gives better prediction 

accuracy than other machine learning methods in the presence of high-dimensional genetic 

predictors.

One limitation of our work is that NN-IC involves tuning multiple hyperparameters. Based 

on our experience, we could start from a single hidden layer with 50 nodes and look 

for the other tuning parameters. Another limitation is that our AD prediction model uses 

only Caucasian individuals which constitutes 93% of all ADNI individuals. Because the 

mechanisms of AD development are reported to be different between Caucasian and non-

Caucasian individuals (Morris et al., 2019), separate prediction models are needed for the 

two populations. It is desirable to develop a new prediction model based on non-Caucasian 

individuals in the future.

There are multiple directions to improve NN-IC in AD prediction. For example, we use 

only demographical and genetic predictors available at the baseline. The prediction accuracy 

could be further enhanced by incorporating time-dependent predictors such as longitudinally 

measured cognitive scores (Li & Luo, 2019; Jiang et al., 2021). Moreover, one may employ 

convoluted neural networks to exact useful features from medical images (i.e., structure 

MRI) and build a comprehensive prediction model using clinical, genetic, and imaging 

information.
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FIGURE 1. 
The representation of individualized importance measures for the top predictors with (A) 

and without (B) APOE in the external set of Data2 using the LIME method. Each row 

represents one predictor and each vertical column represents one subject. This figure appears 

in color in the electronic version of this article, and any mention of color refers to that 

version
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FIGURE 2. 
The Turnbull estimators of the progression-free probabilities of AD for the identified 

subgroups under NN-IC (A) and ICcforest (B) in the external set of Data2. The histograms 

show the predicted g values for NN-IC (A) and the predicted log-likelihood values for 

ICcforest (B), with subgroups identified by the Gaussian mixture model. Two subgroups 

are identified by NN-IC (log-rank test p = 7.4 × 10−5), and no subgroup is identified by 

ICcforest
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TABLE 2

The mean squared prediction error (×100) averages and standard deviations (SD) from 200 replications for 

the NN-IC, ICcforest, and ALASSO models under five scenarios: linear effects (scenario 1) and linear effects 

together with nonlinear effects (scenario 2) or with interactions (scenario 3) or with nonlinear and interaction 

effects (scenario 4) or with interaction and indicator effects (scenario 5). The number of predictors is set at 

p = 20, 50, 100, 500

P NN-IC ICcforest ALASSO

Scenario 1 20 0.7 (0.3) 0.7 (0.3) 0.5 (0.4)

50 1.1 (0.6) 1.7 (0.9) 1.0 (0.8)

100 1.9 (1.7) 2.9 (1.5) 2.1 (1.8)

500 3.0 (4.0) 6.4 (3.4) 8.0 (3.5)

Scenario 2 20 0.8 (0.8) 1.0 (0.4) 1.0 (0.4)

50 1.4 (1.2) 1.9 (1.0) 1.4 (0.9)

100 1.8 (1.4) 3.0 (1.5) 2.8 (1.8)

500 4.4 (7.1) 6.5 (3.4) 8.2 (3.4)

Scenario 3 20 0.8 (0.4) 0.9 (0.4) 0.8 (0.4)

50 1.2 (0.6) 1.8 (0.9) 1.3 (0.9)

100 1.8 (1.4) 3.0 (1.5) 2.4 (1.9)

500 3.3 (2.8) 6.5 (3.4) 7.7 (3.4)

Scenario 4 20 0.8 (0.3) 1.2 (0.4) 1.2 (0.5)

50 1.3 (0.7) 2.0 (1.0) 1.6 (0.9)

100 2.0 (1.6) 3.1 (1.5) 2.7 (1.9)

500 4.0 (3.7) 6.6 (3.4) 7.9 (3.3)

Scenario 5 20 0.7 (0.3) 0.9 (0.4) 0.8 (0.4)

50 1.2 (0.6) 1.8 (0.9) 1.3 (0.8)

100 1.8 (1.3) 2.9 (1.5) 2.5 (1.8)

500 4.4 (4.7) 6.5 (3.4) 8.3 (3.4)
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